Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 149(15): 154305, 2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30342450

RESUMO

New photoresists are needed to advance extreme ultraviolet (EUV) lithography. The tailored design of efficient photoresists is enabled by a fundamental understanding of EUV induced chemistry. Processes that occur in the resist film after absorption of an EUV photon are discussed, and a new approach to study these processes on a fundamental level is described. The processes of photoabsorption, electron emission, and molecular fragmentation were studied experimentally in the gas-phase on analogs of the monomer units employed in chemically amplified EUV resists. To demonstrate the dependence of the EUV absorption cross section on selective light harvesting substituents, halogenated methylphenols were characterized employing the following techniques. Photoelectron spectroscopy was utilized to investigate kinetic energies and yield of electrons emitted by a molecule. The emission of Auger electrons was detected following photoionization in the case of iodo-methylphenol. Mass-spectrometry was used to deduce the molecular fragmentation pathways following electron emission and atomic relaxation. To gain insight on the interaction of emitted electrons with neutral molecules in a condensed film, the fragmentation pattern of neutral gas-phase molecules, interacting with an electron beam, was studied and observed to be similar to EUV photon fragmentation. Below the ionization threshold, electrons were confirmed to dissociate iodo-methylphenol by resonant electron attachment.

2.
J Phys Chem Lett ; 4(17): 2989-93, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26706312

RESUMO

Li-air batteries have generated enormous interest as potential high specific energy alternatives to existing energy storage devices. However, Li-air batteries suffer from poor rechargeability caused by the instability of organic electrolytes and carbon cathodes. To understand and address this poor rechargeability, it is essential to elucidate the efficiency in which O2 is converted to Li2O2 (the desired discharge product) during discharge and the efficiency in which Li2O2 is oxidized back to O2 during charge. In this Letter, we combine many quantitative techniques, including a newly developed peroxide titration, to assign and quantify decomposition pathways occurring in cells employing a variety of solvents and cathodes. We find that Li2O2-induced electrolyte solvent and salt instabilities account for nearly all efficiency losses upon discharge, whereas both cathode and electrolyte instabilities are observed upon charge at high potentials.

3.
Nat Nanotechnol ; 4(9): 557-61, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19734926

RESUMO

Artificial DNA nanostructures show promise for the organization of functional materials to create nanoelectronic or nano-optical devices. DNA origami, in which a long single strand of DNA is folded into a shape using shorter 'staple strands', can display 6-nm-resolution patterns of binding sites, in principle allowing complex arrangements of carbon nanotubes, silicon nanowires, or quantum dots. However, DNA origami are synthesized in solution and uncontrolled deposition results in random arrangements; this makes it difficult to measure the properties of attached nanodevices or to integrate them with conventionally fabricated microcircuitry. Here we describe the use of electron-beam lithography and dry oxidative etching to create DNA origami-shaped binding sites on technologically useful materials, such as SiO(2) and diamond-like carbon. In buffer with approximately 100 mM MgCl(2), DNA origami bind with high selectivity and good orientation: 70-95% of sites have individual origami aligned with an angular dispersion (+/-1 s.d.) as low as +/-10 degrees (on diamond-like carbon) or +/-20 degrees (on SiO(2)).


Assuntos
Materiais Biocompatíveis/química , Cristalização/métodos , DNA/química , DNA/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Elétrons , Teste de Materiais , Conformação de Ácido Nucleico , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...